Energy Transfer from UO₂²⁺ to Sm³⁺ in Phosphate Glass^{*}

R. REISFELD AND N. LIEBLICH-SOFFER

Department of Inorganic and Analytical Chemistry, The Hebrew University, Jerusalem, Israel

Received June 5, 1978; in revised form August 29, 1978

Energy transfer from $UO_2^{2^+}$ to Sm^{3^+} is described. The transfer efficiencies are calculated from the decrease of donor luminescence and lifetimes and from the increase of the acceptor fluorescence. It is shown that the transfer is nonradiative. The energy transfer efficiencies are greater when the donor is excited at higher energy levels due to stronger overlap between electronic levels of donor $UO_2^{2^+}$ and acceptor Sm^{3^+} . From the comparison of energy transfer efficiencies from $UO_2^{2^+}$ to Sm^{3^+} and Eu^{3^+} it is deduced that the overlap between excitation levels of donor and acceptor is a sufficient condition for the transfer.

Introduction

The visible emission of Sm³⁺ is of practical value as it may be utilized in various fluorescence devices. Sm³⁺ as a single dopant in borate (1), phosphate (1), germanate (2), and tellurite (3) glasses has been studied. The radiative transition probabilities along with the transition matrix elements have been calculated recently in these glasses (4). The intensity of fluorescence is ruled by the product of radiative transition probabilities and the population of the excited levels. Since radiative transition probabilities of Sm^{3+} from ${}^{4}G_{5/2}$ are 3.57×10^{-2} per second, the way to increase Sm³⁺ fluorescence is to increase the population of its levels via energy transfer (5). It has been shown previously (6) that the best way to achieve high population of excited states of rare earth ions is to use donors with high absorption coefficients. In this paper we report the phenomenon of energy transfer (E.T.) from

* Partially supported by U.S. Army Contract DAERO 76-G-066.

 UO_2^{2+} to Sm³⁺ in phosphate glass and compare the results to E.T. from the same donor to Eu³⁺.

Energy transfer from UO_2^{2+} to other rare earth ions in solutions (7, 8), crystals (9, 10), and glasses (11-16) was studied. To the best of our knowledge there is no quantitative study of transfer from UO_2^{2+} to Sm^{3+} . The fluorescence characteristics of glasses doped with UO_2^{2+} only which are needed for such a study are reported in Ref. (17).

Experimental

Reagents NaH₂PO₄ \cdot H₂O (Mallinckrodt), 99.5% purity, UO₂(CH₃COO)₂ \cdot 2H₂O (BDH Chemicals), Eu₂O₃, and Sm₂O₃ (Molycorp), 99% purity, were used.

A mixture of phosphate with the appropriate weight of rare earth (R.E.) was homogenized in an electric vibrator and melted in a platinum crucible at 900° C. Drops of hot melt were poured on a glazed ceramic plate into a ring of 1-cm diameter and pressed with another glazed ceramic.

Fluoresecnce spectra were recorded by a spectrofluorimeter built in our laboratory (18).

Lifetime measurements were performed using an EGG-FX-6AU flash lamp, having an average pulse duration of 3 μ sec. The pulsed fluorescence was transmitted into a 162 PAR boxcar integrator and recorded on an XY recorder.

Results

The appearance of the UO_2^{2+} excitationbands in the excitation spectrum of Sm^{3+} (Fig. 1) is the proof for the energy transfer from UO_2^{2+} to Sm^{3+} . The excitation bands of UO_2^{2+} in phosphate glass are at 330, 430, and 470 nm when monitored at one of the five fluorescence peaks between 500 and 600 nm, as can be seen from Fig. 2.

The emission of $UO_2^{2^+}$ was quenched in the presence of Sm³⁺ as a result of the E.T. The decrease was observed in all five peaks and in the same amount, indicating the nonradiative character of the transfer. The transfer efficiencies were calculated according to Ref. (19) by

$$\eta_{t} = 1 - \frac{\eta_{d}}{\eta_{d}^{0}}, \qquad (1)$$

where η_t is energy transfer efficiency, η_d^0 the fluorescence efficiency of the pure donor, and η_d the fluorescence efficiency of the donor with acceptor present. The values of η_t are given in Table I. In this table we also give the results of E.T. efficiencies from UO₂²⁺ to Eu³⁺ in phosphate glass.

The decay time of $UO_2^{2^+}$ was measured alone and with the presence of Sm^{3+} and Eu^{3^+} . The decay was not a simple exponential in all cases. Examples of the decay curves of $UO_2^{2^+}$ in the presence of Sm^{3^+} and Eu^{3^+} are presented in Figs. 3 and 4, where the shortening of the $UO_2^{2^+}$ lifetime is demonstrated. τ was taken where the intensity fell to 1/e of its initial value.

Transfer efficiencies were calculated according to the equation

$$\eta_{\mathfrak{l}} = 1 - \frac{\tau_{\mathsf{d}}}{\tau_{\mathsf{d}}^0}.$$
 (2)

where τ_d^0 is the lifetime of the pure donor and τ_d is the lifetime of the donor in the presence of the acceptor. The efficiencies thus calculated are given in Table II.

The enhancement of Sm^{3+} fluorescence in the presence of UO_2^{2+} obtained by measuring the relative fluorescence of the 645-nm

FIG. 1. Excitation spectrum of Sm^{3+} (---) and Sm^{3+} in presence of UO_2^{2+} (----) monitored at 645 nm.

FIG. 2. Excitation and emission of $UO_2^{2^+}$ in phosphate glass compared to the electronic energy levels of Sm³⁺ and Eu³⁺ according to Ref. (5, p. 93).

peak when excited at 330, 405, 430, and 470 nm given in Table III.

The relation between the increase of Sm³⁺ fluorescence $\Delta \eta_a$ to the transfer efficiency η_t is shown in Eq. (3):

$$\Delta \eta_{a} = k A d_{\lambda} \phi d_{\lambda} S_{\lambda} \eta_{\iota \lambda}, \qquad (3)$$

where Ad_{λ} is the absorption of the donor at the excitation wavelength λ , ϕd_{λ} the quantum efficiency of the donor fluorescence where excited at wavelength λ , S_{λ} the spectral sensitivity of the spectrofluorimeter (including light source and monochrommator), and k the proportionality constant, obtained by equating $\eta_{t\lambda}$ ($\lambda = 330$ nm) from

T A	ъτ	r	1
IA	BL	Æ	J

Efficiencies of E.T. between $UO_2^{2+} \rightarrow Sm^{3+}$ and $UO_2^{2+} \rightarrow Eu^{3+}$ Obtained from Steady State Fluorescence Calculated by Eq. (1)

1% wt UO ₂ ²⁺ +	η_t	1% wt UO_2^{2+} +	η_t
0.5% Sm ³⁺	0.18	0.5% Eu ³⁺	0.27
1% Sm ³⁺	0.25	1% Eu ³⁺	0.36

Eq. (1) to $\eta_{t\lambda}$ obtained by Eq. (3). The three factors Ad_{λ} , ϕd_{λ} , S_{λ} are intrinsically included in the excitation curve of $UO_2^{2^+}$ and are eliminated by dividing $\Delta \eta_a$ by the intensity of $UO_2^{2^+}$ peaks at wavelength λ in the excitation spectrum. The values thus obtained are given in Table IV.

FIG. 3. Fluorescence decay curves of UO_2^{2+} and with presence of 1 wt% Sm³⁺.

FIG. 4. Fluorescence decay curves of UO_2^{2+} and with presence of various concentrations of Eu^{3+} .

From Table IV it can be seen that the transfer efficiencies are greater when the excitation level is at higher energy. This can be connected with the stronger overlap between electronic levels of Sm^{3+} and UO_2^{2+} at higher energies as presented in Fig. 2. In this figure we also see that for Sm³⁺ electronic levels there is a good overlap between both excitation and emission bands of UO_2^{2+} , while in case of Eu^{3+} there exists a good overlap only between the excitation of UO_7^{2+} and the electronic levels of Eu^{3+} . Since transfer efficiencies are somewhat higher for Eu^{3+} (Table I) we can deduce that overlap of the excitation spectrum of the donor with the acceptor electronic levels satisfies the condition that energy transfer will occur.

It is worthwhile to note the highest increase of Sm^{3+} fluorescence in the presence of UO_2^{2+} at excitation 405 nm (Table III),

TABLE I

Efficiencies of E.T. between $UO_2^{2^+} \rightarrow Sm^{3+}$, $UO_2^{2^+} \rightarrow Eu^{3^+}$ Calculated from Lifetime Measurements by Using Eq. (2)

1% wt UO ₂ ²⁺ +	η_t	1% wt UO ₂ ²⁺ +	η,
1% Sm ³⁺	0.22	0.5% Eu ³⁺ 1% Eu ³⁺	0.14 0.17

TABLE III Sm³⁺ Fluorescence Intensity at 645 nm Excited at Various Wavelengths

λ Excitation (nm)	R .f. ^{<i>a</i>} 0.5% Sm ³⁺	R.f. $0.5\% \text{ Sm}^{3+}$ $+1\% \text{UO}_2^{2+}$	R.f. 1% Sm ³⁺	R.f. 1% Sm ³⁺ +1%UO ₂ ²
330	93	480	96	630
405	300	600	430	760
430	32	500	36	590
470	167	330	196	403

^a R.f. = Relative fluorescence, arbitrary unit.

where the excitation of $UO_2^{2^+}$ is relatively low. This can arise from a linear combination of the electronic state of Sm³⁺ with the wavefunction of $UO_2^{2^+}$ thus increasing the transition probability of this state origination from the ⁶P_J multiplet of Sm³⁺. This can be seen in the excitation spectrum of Sm³⁺ codoped with $UO_2^{2^+}$ (Fig. 1).

The energy transfer from $UO_2^{2^+}$ to Sm^{3^+} mainly occurs in a nonradiative way. This can be seen from the decrease of the $UO_2^{2^+}$ decay time in the presence of Sm^{3^+} and from the equivalent decrease in the five fluorescent peaks of $UO_2^{2^+}$ in the presence of Sm^{3^+} .

The detailed nonradiative mechanism of the energy transfer cannot be calculated. The various sites of ions present in the glass host create many distances for pairs of $UO_2^{2^+}$ -Sm³⁺, and thus they interact in a different fashion (6). For instance, at very small dis-

TABLE IV

Efficiencies of E.T. Obtained from the Increase of Sm^{3+} Fluorescence Calculated by Eq. (3)

λ Excitation (nm)	$\eta_{ia} \\ 0.5\% \text{ Sm}^{3+} + 1\% \\ \text{UO2}^{2+} $	$1\% \frac{\eta_{ta}}{\text{Sm}^{3+} + 1\%} \\ \text{UO}_2^{2+}$
330	0.18	0.25
430	0.17	0.21
470	0.12	0.15

tances quadrupole–quadrupole or exchange interactions may be effective, whereas at larger distances a dipole–dipole interaction would predominate. In addition diffusion of energy between equivalent sites of UO_2^{2+} and Sm³⁺ may be important at the concentration measured. In order to elucidate this problem it is advisable to perform energy transfer measurements under laser excitation using time-resolved spectroscopy.

References

- R. REISFELD, L. BOEHM, AND E. GREENBERG, in "Proc. 10th Rare Earth Research Conference, Arizona," p. 1149 (1973).
- 2. R. REISFELD, A. BORNSTEIN, AND L. BOEHM, J. Solid State Chem. 14, 14 (1975).
- 3. H. BILL AND R. REISFELD, unpublished results.
- 4. L. BOEHM, R. REISFELD, AND N. SPECTOR, to be published.
- 5. R. REISFELD AND C. K. JØRGENSEN, "Rare-Earth Lasers and Excited States," Springer-Verlag, Berlin/New York (1977).

- 6. R. REISFELD, Struct. Bonding (Berlin) 30, 65 (1976).
- 7. J. L. KROPP, J. Chem. Phys. 46, 843 (1967).
- B. O. JOSHI, A. G. I. DALVI, AND T. R. BANGIA, J. Lumin. 10, 261 (1975).
- 9. G. BLASSE, J. Electrochem. Soc. 115, 738 (1968).
- 10. M. V. HOFFMAN, J. Electrochem. Soc. 117, 227 (1970).
- 11. H. W. GANDY, R. J. GINTHER, AND J. F. WELLER, Appl. Phys. Lett. 4, 188 (1964).
- 12. N. T. MELAMED, C. HIRAYAMA, AND P. W. FRENCH, *Appl. Phys. Lett.* 6, 43 (1965).
- L. G. DESHAZER and A. Y. CABEZAS, *Proc. IEEE* 52, 1355 (1964).
- 14. A. KITAMURA, J. Phys. Soc. Japan 20, 1283 (1965).
- J. C. JOSHI, B. C. JOSHI, N. C. PANDEY, AND J. JOSHI, Indian J. Pure Appl. Phys. 15, 326 (1977).
- J. C. JOSHI, N. C. PANDEY, B. C. JOSHI, AND J. JOSHI, Indian J. Pure Appl. Phys. 15, 519 (1977).
- 17. N. LIEBLICH-SOFFER, R. REISFELD, AND C. K. JØRGENSEN, *Inorg. Chim. Acta* (1978).
- 18. R. REISFELD, A. HONIGBAUM, G. MICHAELI, L. HAREL, AND M. ISH-SHALOM, *Isr. J. Chem.* 7, 613 (1969).
- 19. R. REISFELD, Struct. Bonding (Berlin) 13, 53 (1973).